ENVIRONMENT, HEALTH & SAFETY

Sodium - 22

Radiological Safety Guidance

Revision Date: 09/20/18

Physical Data

GAMMA ENERGIES

- 511.0 keV (179.8% abundance/annihilation)
- 1274.5 keV (99.9%)

BETA ENERGY [POSITRON (BETA⁺)]

- 545.5 keV (89.8% abundance/maximum energy)
- 215.5 keV (89.8% abundance/average energy)

• 2842.1 keV (0.6% abundance/maximum energy)

• 834.8 keV (0.6% abundance/average energy)

	2 (02
Physical Half-Life	2.602 years
Biological Half-Life	11.0 days
Effective Half-Life	11.0 days
Specific Gamma Constant	1.2 mR/hour per millicurie at 1.0 meter
Specific Activity	6244 curies/gram
Maximum Beta Range in Air	56.0 inches
Maximum Beta Range in Water/Tissue	0.07 inch = 0.18 cm = 1.8 mm

- A beta particle with energy of 795 keV can penetrate to a depth of the lens of the eye (0.3 cm or 300 mg/cm²).
- A beta particle with energy of 70 keV is required to penetrate the dead layer of skin (0.007 cm or 7 mg/cm²).
- Fraction of Na-22 beta particles transmitted through the dead layer of skin (0.007 cm) is approximately 78%.
- Rule of Thumb:
 - o 500 keV betas can penetrate approximately 4 feet in air
 - o 500 kev betas can penetrate approximately 2 mm of water or tissue

Shielding

MATERIAL	THICKNESS
Lead Brick	(1" to 2" thick)
Half-Value Layer* [lead (11.34 g/cm ³)]	1.01 cm = 0.40" (1/4")
Half-Value Layer [concrete (2.35 g/cm ³)]	5.15 cm = 2.03"
Tenth-Value Layer** (lead)	3.4 cm = 1.34"
Tenth-Value Layer (concrete)	17.1 cm = 6.73"

* Half-Value Layer (HVL) = amount of shielding necessary to reduce a radiation exposure rate to 1/2 (50%) of its original value.

** Tenth-Value Layer (TVL) = amount of shielding necessary to reduce a radiation exposure rate to 1/10 (10%) of its original value.

Volatility

Inherent Volatility (STP): Insignificant/Negligible

Exposure: Radiological Safety Information

Exposure Rates

From an unshielded isotropic point source of Na-22 (1.0 mCi):

DISTANCE	MILLIREM/HOUR
1.00 cm	12,000
5.00 cm	480
10.00 cm	120
100.00 cm	1.2
6 inches	51.7

Exposure Prevention

• Always wear a lab coat and disposable gloves when handling Na-22.

Engineering Controls

- Drying can form airborne Na-22 dust contamination. Rapid boiling can cause airborne Na-22 contamination.
- Expelling Na-22 solutions through syringe needles and pipette tips can generate airborne aerosols.
- Use high-density (high Z) shielding material to shield Na-22 (lead).
- Use remote handling tools when handling > 1 mCi of Na-22.

Administrative Controls

• Sealed and plated sources of Na-22 (>100 uCi) MUST be leak-tested and inventoried by RSS personnel once every 6 months. Research personnel must maintain a current inventory of Na-22 sources at all times.

Personal Safety

• Na-22 sources MUST be secured from unauthorized use, removal, and vandalism at all times (secure in locked cabinet when not in use).

Regulatory Compliance Limits (10 CFR 20/Appendix B)

REGULATION	UNIT OF MEASURE	NOTES
Derived Air Concentration	3.0E-7 uCi/mL (all	
(DAC) (Occupational	compounds)	
Exposures)		
Airborne Effluent Release	9.0E-10 uCi/mL (all	Applicable to the assessment and control of
Limit (Annual Average)	compounds)	dose to the public (10 CFR 20.1302). If this
		concentration was inhaled or ingested
		continuously over one year it would produce
		a TEDE of 50 millirem.
Unrestricted Area	1,000 dpm/100 cm ²	
Removable Contamination		
Limit		
Container Labeling Quantity	10 uCi	
(10 CFR 20.1905)		
Leak Tests (Sealed/Plated	Semi-Annually	
Sources > 100 uCi)		

Annual Limit on Intake (ALI)

- 400 uCi (all compounds/oral ingestion/CEDE/Whole Body/5 rem)
 - 1.0 ALI = 400 uCi ingested (all compounds) = 5,000 millirem CEDE/WB
- 600 uCi (all compounds/inhalation/CEDE/WB/5 rem/Class "D")
 - 1.0 ALI = 600 uCi inhaled (all compounds) = 5,000 millirem CEDE/WB

Contamination

Radiological Data

Na-22 is eliminated from the body via the urine with an 11-day half-life

Critical Organ (Biological Destination)	Total Body	
Routes of Intake	Ingestion	
	Inhalation	
	Puncture	
	Wound	
	 Skin Contamination (absorption) 	
External and internal exposure and	Committed Dose Equivalent (CDE): (Internal Organs)	
contamination are radiological	 20.5 mrem/uCi (ingestion/endosteal) (Internal Organs) 	
concerns	 15.9 mrem/uCi (ingestion/bone marrow) 	
	 13.0 mrem/uCi (inhalation/endosteal) 	
	 8.3 mrem/uCi (inhalation/bone marrow) 	
	Committed Effective Dose Equivalent (CEDE):	
	 12.5 mrem/uCi (ingestion/whole body) 	

Skin Contamination (Na-22)

- Skin Contamination Exposure Rate: 5,065 mrem/hour per uCi/cm²
 - \circ Dose to basal cells at depth of 7 mg/cm² or 0.007 cm in skin tissue without air reflection
- Skin Contamination Exposure Rate: 1,266 mrem/hour per uCi/cm²
 - Dose to skin of extremities at a depth of 30-50 mg/cm² or 0.05 cm in tissue without air reflection

Detect Contamination

Survey Instrumentation

- Monitor personnel (hands, clothing, shoes, etc) work areas, and floors using a G-M survey meter equipped with a pancake/frisker probe (preferred) for gross contamination.
- Survey meter equipped with a G-M pancake/frisker or standard cylindrical G-M probes are quite efficient to detect Na-22.
- Survey meter equipped with a 1"x1" Nal scintillation probe will be very efficient for the detection of Na-22; perhaps, too sensitive and costly for routine radiation monitoring work.
- Liquid scintillation counter (LSC), gas proportional counter (GPC), or gamma counters (indirect counting methods) should be used to detect removable surface contamination of Na-22 on smears or swabs.

Required Personal Radiation Monitoring

- Dosimeters (Whole Body and Finger Tabs): **Required** when handling > 5.0 mCi of Na-22 at **any** time.
- Urinalyses: Not Required; however, may be requested by RSS personnel after a radioactive spill of Na-22 or a suspected intake.
- Whole Body Bioassay: May be requested after suspected intake of Na-22.